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A computing technique for low-speed fluid dynamics has been developed for the cal 
culation of three-dimensional flows in the vicinity of one or more block-type structures. 
The full time-dependent Navier-Stokes equations are solved with a finite-difference 
scheme based on the Marker-and-Cell method. Effects of thermal buoyancy are included 
in a Boussinesq approximation. Marker particles that convect with the flow can be used 
to generate streaklines for flow visualization, or they can diffuse while convecting to 
represent the dispersion by turbulence of particulate matter. The vast amount of data 
resulting from these calculations has been rendered more intelligible by perspective-view 
and stereo-view plots of selected velocity and marker-particle distributions. 

I. INTRODUCTION 

Finite-difference solutions have been obtained for many complicated fluid-flow 
problems [I], but until recently, there have been relatively few of these involved 
with three-dimensional transient flows. The three-dimensional calculations that 
have been reported have been restricted in scope, having been developed for the 
solution of specific problems, for example, the structure of the planetary boundary 
layer [2], for Benard convection [3], and for flow between two concentric cylinders 
[4]. In this paper a method is described for calculating transient three-dimensional 
flows about large obstacles and over irregular boundaries. The technique is based 
on a simple variant of the Marker-and-Cell method [5] for the solution of the 
incompressible Navier-Stokes equations. Thermal-buoyancy effects are included 
in a Boussinesq approximation, and a technique developed by Sklarew [6] is used 
to represent the convection and diffusion of particulate matter. Only confined flow 
calculations are reported here. Extensions to three-dimensional, free surface, 
flows over and around obstacles will be reported elsewhere [7]. 

A major problem with three-dimensional calculations is the limited numerical 
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resolution that may be obtained with the fast access memories of even the largest 
computers. Of course, additional external storage devices may be employed but 
these usually require much larger amounts of computer time. The program used 
for the examples in this paper is limited to a maximum of 3375 computational 
cells when run on a CDC 7600 computer with a 64 000-word fast core memory. 
This is not large, since 3375 cells is equivalent to a cubical mesh with only 15 cells 
on an edge. Nevertheless, sample calculations show that meaningful and interesting 
calculations can be performed even with this limited resolution. 

Another problem associated with three-dimensional calculations is how to 
reduce the vast amounts of computed data into easily assimilated forms. Displays 
of velocities, contours, and other kinds of data taken from two-dimensional slices 
through a three-dimensional mesh are not always sufficient to form a clear picture 
of the complete flow pattern. To reconstruct a composite three-dimensional mental 
picture from a collection of two-dimensional slices is not an easy task. An alter- 
native and more efficient means of displaying data is described in this paper. The 
technique is based on a hidden-line perspective-view plot routine designed especially 
for finite-difference calculations [8]. A perspective picture of, for example, velocity 
vectors associated with a given two-dimensional plane of calculational cells shows 
not only the three-dimensional variations of the vectors, but also their orientation 
with respect to all nearby obstacles. An even better display method consists of 
making two perspective views from slightly different observation points. When 
correctly done the result can be combined into a stereoscopic view, which is the 
ideal way to see the structure of three-dimensional flows. 

Examples of these various display methods are described in more detail in the 
text. In Section II a description of the basic fluid-dynamic computing technique is 
presented together with some of its properties. Section III contains descriptions of 
the buoyancy and particulate transport models. 

II. THE BASIC TECHNIQUE 

A. Finite-Difference Approximations 

The Marker-and-Cell technique for the calculation of incompressible fluid 
flow [5] is an Eulerian finite-difference approximation to the Navier-Stokes 
equations 

?E+!Y+$+!$ -~+,,+Y(~+~+~)r 

c?+!g+g+J$ -g+,,+Y(g+g+$), (1) 
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and the mass equation 

(2) 

where p is the ratio of pressure to constant density, g, , g, , g, are prescribed body 
accelerations and v is the coefficient of kinematic viscosity. In addition to solving 
directly for the velocity components and pressures, the Marker-and-Cell method 
also uses marker particles that are convected about by the fluid to record the 
locations of free surfaces. In this paper only confined flows are considered so that 
marker particles are not required for this purpose, but they are used to represent 
distributions of particulate matter as described in Section 1II.B. 

The region in which computations are to be performed is divided into a set of 
small rectangular cells having edge lengths 6x, 6y, and 6z. With respect to this set 
of computational cells, velocity components are located at cell faces and pressure 
values are at cell centers, see Fig. 1. Cells are labeled with an index (i, j, k), which 
denotes the cell number as counted from the origin in the x, y, and z directions, 
respectively. Also pi,j,k is the pressure at the center of cell (i, j, k), while ni+l/$.j,k is 
the x-direction velocity at the center of the face between cells (i,j, k) and (i + l,j, k), 
and so on. 

FIG. 1. Location of velocity components on a typical Eulerian cell (i, j, k). 



THREE-DIMENSIONAL FLOWS 327 

A time-dependent solution is obtained by advancing the flow field variables 
through a sequence of short time steps of duration 8t. The advancement for one 
time step is calculated in two stages. First the velocity components are all advanced 
using the previous state of the flow to calculate the accelerations caused by convec- 
tion, viscous stresses, body forces, pressure gradients, etc. In other words, stage 
one consists of a simple explicit calculation. However, this explicit time advance- 
ment does not necessarily lead to a velocity field with zero divergence, that is, to 
one that conserves mass. Thus, in stage two, adjustments must be made to insure 
mass conservation. This is done by adjusting the pressure in each cell in such a way 
that there is no net mass flow in or out of the cell. A change in one cell will affect 
neighboring cells so that this pressure adjustment must be performed iteratively 
until all cells have simultaneously achieved a zero mass change. 

In the original Marker-and-Cell method the pressures in stage two were obtained 
from the solution of a Poisson equation. A related technique developed by Chorin 
[3] involved a simultaneous iteration on pressures and velocity components. 
Viecelli [9] has shown that the two methods as applied to the Marker-and-Cell 
method are equivalent. In this paper we have chosen the second procedure and 
simultaneously iterate both pressures and velocities. This choice simplifies the 
applications of boundary conditions as discussed in Section 1I.C. 

The specific finite-difference expressions used for the steps described above may 
assume many forms. Those that follow are essentially direct extensions of the 
original Marker-and-Cell method. The stage one, explicit advancement of velocities, 
resulting in quantities labeled by tildes, is 

. 
ui+1/2.j.k = Ui+l12,j,k + Bt{(1/8X)[(Ui.Ak)2 - (Ui+l.i.k)21 

+ (I/sy)[(UZl)i+l,2,j-l/2,k - (uu)i+l/2.~+1/2.kl + (1/6z)[(uw)i+112,j,k-l/2 

- (UW)i+l/2,j,k+1/21 + gz + (1/6x)(i%Ak - Pi+l,Lk) 

+ (V/BX2)(~i+3/2.i.k - 2Ui+l/2,.i.k + ui-l/2,Lk) 

+ (V/8~2h+l,2.i+l,k - 2Ui+1/2,i.k + ui+l12.Gl.k) 

+ (v/6z2)(%+l/2,j,k+1 - 2Ui+l/2.Lk + h+lil,i,k--l)), 

%+ll2.k = %+1/2,k + st{(1/sx)[(uu)i-l12,i+l,2,k - (2iU)i+l/2,i+112.kl 

+ (1/6y)[hJ.k)2 - hi+l.k)21 

+ (1/~z)[(uw)i.j+l,2,k-,/2 - (z)wh+l/2.k+1/21 

+ gv + (1/6d(PiAk - Pi,i+l,k) 

+ (v/8~2)(21i+l.i+1/2.k - 2vi,j+l/2,k + yi-l,j+l/2,k) 

+ (v/a~2h,~+2/2.k - 2ui.i+l12,k + %.&llP.k) 

+ (V/8Z2)(ui,j+112,k+l - 2vi,j+l/2,k + Vi.5+1/2.k-l)), 

581/10/2-11 
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Wi.j.k+ll2 = wi,j,k+1/2 + st{(1/sX)[(WU)i-l,2.i.k+l/2 - (WU)i+l/2.i.k+l121 

+ (l/sy)[(WV)i,j-l/2,k+~,2 - (Wu)i,j+1/2,k+1/21 

+ (1/8Z)[(Wi,i.k)2 - (wi.i.k+l)21 

+ gz + (1/6z)h,k - h’,k+d 

+ (V/8X2)(Wi+l,~,k+1,2 - 2wi,Lk+li2 + Wi--l,i.k+l/2) 

+ (V/6~2)(Wi,j+l,k+1/2 - 2wi,Lk+,/2 + Wi.i--l,k+l12) 

+ (V/6z2~(Wi,i,k+3,2 - 2wi,Lk+1/2 + wi,Lk-U2)}. (3) 

Quantities needed at positions other than where they are defined are calculated as 
simple averages, e.g., &,i,k = $(&+I,2,j,k $ ~~-r,~,~,~), and the square of a quantity, 
e.g., u2 at (i,j, k) is the square of the average, (&,j,k)2, rather than the average of the 

2 
square% %+llB.Lk and &2.Lk . 

The computations indicated in (3) are made for all (i,,i, k), and represent a 
straightforward explicit finite-difference approximation to (1). Although centered 
differences have been used in approximating the convection terms, the resulting 
equations will be stable provided sufficient viscosity is applied. This is similar to 
the MAC method [lo], and is more fully described in Section 1I.E. 

B. Pressure Iteration 

Equations (3) do not necessarily result in a velocity field that satisfies (2), so 
that some adjustment of the tilde velocities must be made to insure mass conserva- 
tion. An iterative process is used for this purpose, in which the cell pressures are 
modified to make the velocity divergence vanish. In each cell (i,.i, k) the value of 
the velocity divergence D is calculated as 

Di,j,k = (1/8X)(h+l,2.Lk - %-l,Z,j,k) + (1/8Y)(%,j+1,2,k - ui.?--li2,k) 

+ (1/8z)(wi.~,k+l,2 - Wi,~,k--l12)~ (4) 

If the magnitude of D is less than some prescribed small value E, the flow is locally 
incompressible and no change in the cell velocity is necessary. However, if the 
magnitude of D is larger than E then the pressure is changed by 

where /3 is given by 

8p = +D, (5) 

The constant fi,, is a relaxation factor, where overrelaxation and underrelaxation 
correspond to fl,, greater than or less than unity, respectively. For iteration stability 
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it is necessary to keep f10 < 2. A value of p,, = 1.7 is commonly used, but this is 
occasionally too large when there are strong flow distortions. The value of PO 
giving the most rapid convergence can, in general, only be determined by experi- 
mentation. 

Once Sp has been calculated for a cell (i,j, k) it is necessary to add it to the 
pressure pi,j,k , and to adjust the velocity components on the sides of cell (i,j, k) 
according to. 

Ui+lh,i,k - %+1/2.?,k + (st/sx) ~PF 

ui-1/2,?,k - ui-1/2,j,k - @t/~x) 6P, 

%,j+l/2,k - Ui.j+l12,k + @#y) %P 

Vi,C4i2,k - vi,i-l12,k - (WY) &P, 

Wi,j,k+llZ - Wi,j.k+l12 + (at/az) SP, 

wi,j,k-l/2 --f wi,~,k-l12 - (St/Sz) sp. (7) 

This process is repeated successively in all cells until no cell has a magnitude of D 
greater than E. 

With the proper application of boundary conditions the pressure iteration will 
converge, and it will do so in relatively few sweeps of the mesh, provided the flow 
is not changing too rapidly from one cycle to the next, and provided E is not 
chosen excessively small. For the problems illustrating this paper approximately 
5-10 sweeps are necessary with an E typically of magnitude 10-2U/L, where U/L is 
a representative velocity to length ratio. 

When the iteration has converged, the adjusted velocities satisfy the mass- 
conservation condition (2) and this completes the necessary calculations for 
advancing the flow field through one cycle in time. 

If, in addition, it is desired to permit the transport of heat or pollution concen- 
trations these field quantities must also be advanced one time step before beginning 
the next fluid-dynamic cycle. Likewise, discrete marker particles used to define 
particulate distributions, or for flow-visualization purposes, must be moved before 
starting the next cycle. 

C. Boundary Conditions 

The five principle kinds of boundary conditions to be considered are rigid 
free-slip walls, rigid no-slip walls, inflow and outflow boundaries, and periodic 
boundaries. For simplicity it will be assumed that all physical boundaries coincide 
with cell boundaries. The inclusion of more general boundary configurations is a 
difficult problem, but a good start in this direction for two-dimensional flows has 
been made by Viecelli [9]. 

The prescription of boundary conditions consists of a choice for both the normal 
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and tangential velocities at the boundary. The normal velocity is easy to prescribe 
when the boundary coincides with a cell edge, since it is the normal velocity that is 
stored for each cell face. For a rigid boundary this velocity is set to zero, while for 
an input boundary it is assigned the desired input value. If the boundary is periodic 
the value must be chosen equal to the corresponding velocity one wavelength away. 
For outflow boundaries, however, there is no unique prescription, but the general 
idea is to chose boundary conditions that have the least upstream influence. It has 
been found that for this purpose a useful prescription consists of setting the normal 
tilde velocity on the outflow boundary equal to the corresponding tilde velocity 
immediately upstream, and then letting the velocity on the boundary relax as it 
wishes during the pressure iteration. This appears to keep the flow going smoothly 
out of the boundary in the examples tested. 

Tangential velocities are needed in cells immediately outside the fluid region in 
order to specify the appropriate viscous stress at the boundary. These velocities are 
set equal to the adjacent velocities inside the fluid when it is desired that the bound- 
ary represent a free-slip wall (plane of symmetry), and they are set equal to the 
negative of the adjacent fluid velocities when the boundary is to be no slip. In other 
words, the external velocities tangent to a boundary are chosen to give either 
vanishing shear or vanishing velocity at a rigid wall. A more complete discussion 
of these alternatives and the conditions under which each should be used is con- 
tained in Ref. [1 11. If the boundary is periodic then these external velocities are set 
equal to their counterparts one wavelength away, and at an inflow boundary they 
are prescribed to give the desired input flow. At an outflow boundary they are set 
equal to the adjacent velocities inside the fluid, which encourages a smooth transi- 
tion through the outflow boundary. 

To aid in the identification of various kinds of boundaries a flagging scheme is 
employed in the computer program, which assigns to each cell a number that 
identifies it as an obstacle cell, inflow cell, outflow cell, etc. In this way it is easy to 
arrange a distribution of obstacles in a mesh, and to have various combinations 
of inflow and outflow boundaries. 

Several examples illustrating different combinations of boundary conditions are 
shown in Figs. 2-6. In Fig. 2 a horizontal layer of velocity vectors is shown in 
perspective for steady flow around a simple rectangular structure. A uniform flow 
is entering the computing region (large rectangular box) through the left face and is 
leaving through the right face. Each vector (short line segment) is drawn from the 
corner of a computing cell with a direction and magnitude representing the average 
velocity about that corner. 

A recirculation in the wake region is clearly evident in the figures. It consists of a 
pair of counter-rotating eddies that are small near the top of the structure, but large 
near its base. The x-y components of the same set of velocity vectors have been 
plotted in Fig. 3. Here the double eddy structure is more clearly seen, but no 
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FIG. 2. Perspective view of velocity field about a single building. 
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FIG. 3. Projection of velocity vectors seen in Fig. 2 on a z = const. plane. 

indication of the distribution of z-component velocity is available in this kind of 

plot. Velocity vectors for a similar calculation, but involving a more complicated 
obstacle, are shown in Figs. 4-5. The three dimensionality of the velocities is most 
clearly seen in Fig. 5. 

In the previous examples the inflow is normal to the front face of the obstacle, 
but by making two adjacent sides of the mesh inflow boundaries and the opposite 
two sides outflow boundaries, the incident flow can be adjusted to any angle. 
Figure 6, for example, shows the results of a calculation with the flow passing 
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through the mesh from left to right, and oriented 45” to the large faces of the two 
obstacles. 

D. Computer Requirements 

In the previously described calculations the total number of computational cells 
used was 3344, requiring an average calculation time of 1-2 set per time cycle on a 
CDC 7600 computer. With this number of cells the computer program absorbed 
nearly all the storage available in a 64 000-word fast core memory. Fortunately, 
even with this limited resolution there are many interesting calculations that can be 
performed. 

FIG. 4. Perspective view of velocity field near the bottom of a complicated structure. 

FIG. 5. Perspective view of velocity field near the top of a complicated structure. 
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FIG. 6. Perspective view of velocity field in vicinity of two buildings. Incident flow is oriented 
45” with respect to large faces of the buildings. 

The problem of what to do when more resolution is needed, however, is an 
interesting one that deserves further comment. Clearly, the simplest approach is to 
use auxiliary memory units. Although more computer time is needed when operat- 
ing with this kind of storage, because of the longer time needed to retrieve data, 
the calculation time for the examples illustrating this paper could easily be in- 
creased by an order of magnitude without becoming too unreasonable. An order 
of magnitude increase is roughly equivalent to doubling the finite-difference 
resolution, since that requires a factor of eight increase in the number of cells and a 
somewhat larger increase in calculation time. 

Nevertheless, it is easy to think of three-dimensional problems in which still 
larger increases in resolution are required, and aside from relying on the develop- 
ment of larger and faster computers, it is clear that more effort must be devoted to 
improving both computer-programming and numerical-approximation methods. 

E. Numerical Stability 

No additional stability conditions are introduced in the Marker-and-Cell 
method when it is used for three-dimensional computations, but the stability 
conditions previously reported [5, 10, 121 must be appropriately modified. 

The basic restriction on the size of the time step St is that fluid must not be 
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permitted to flow across more than one computational cell in one time step, that is, 

6t < min[&/l ff I , Sy/l 2) I ,6z/l w  I]. (8) 

This is clearly a numerical accuracy condition, because the convective flux approxi- 
mations used in the tilde calculations (3) assume exchanges between adjacent cells 
only. This condition must also be satisfied for numerical stability, as can be verified 
by linearizing the difference equations and performing a Fourier analysis on 
them [12]. 

The linear analysis also reveals that the equations will always be unstable unless 
the kinematic viscosity v is large enough; a good approximation is 

v > (St/Z) max[u2, v2, w”]. (9) 

This condition follows easily from a heuristic stability analysis [lo], which shows 
that v should also satisfy the following approximate inequality, 

(10) 

The last two conditions imply a lower bound on the kinematic viscosity, which 
imposes an upper limit on the flow Reynolds number. This Reynolds-number 
restriction is not unique to the Marker-and-Cell method, but is a necessary feature 
of all finite-difference methods. The reasons for this can be shown in many ways. 
One way is to argue as follows: Truncation errors are unavoidable in finite- 
difference approximations, and even though they do not always lead to instabilities 
that require restrictions like (9) or (lo), they do influence the accuracy of a calcula- 
tion. For purposes of accuracy, if the effects of v are not to be obscured by trunca- 
tion errors it is necessary that 

v > dlxh, (11) 

where 01 is some numerical factor of order unity, Ax is a typical cell dimension, and 
Au is a typical velocity change across a cell. This relation is based on the observa- 
tion that a difference approximation of order (p + 1) will have truncation error 
terms that modify v by a contribution like, 

In a finite-difference approximation this quantity will be approximated by oldxdu, 
which defines the value of 01. For the order of magnitude estimate wanted here, 01 
can be replaced by unity. Thus, (11) is simply the statement that v must be larger 
than these errors for an accurate calculation. Now if a typical dimension in a flow 
L is resolved by N finite-difference cells, L = Ndx, and if a typical velocity U is 
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Ndu, then (11) also states that the flow Reynolds number, R = UL/v, must be less 
than N2. In other words, the condition 

R < N2 (12) 

is a necessary restriction for accurate finite-difference calculations. 
It may be noted that a few finite-difference approximations, for example, those 

using the so-called donor-cell approximation [13], have even larger truncation 
errors that lead to the more restrictive condition 

R < N. (124 

Condition (12) is a rough estimate for the maximum allowable Reynolds number 
obtainable with any finite-difference approximation. It is primarily an accuracy 
condition, but it often happens, as in the present case, that it is a condition for 
stability as well. 

Finally, when very low Reynolds-number flows are to be simulated the time step 
is additionally restricted by the condition 

dt < l/2 (& + & + &). (13) 

In analogy with the interpretation of (8) this restriction may be roughly described 
as limiting the distance over which momentum diffuses during one time step to be 
less than one cell width. 

III. AUXILIARY FEATURES 

A. Thermal Buoyancy 

A heat equation may be simultaneously solved with the fluid equations in order 
to similate the effects of thermal buoyancy that are important for many meteoro- 
logical applications. The differential equation governing convection and diffusion 
of temperature T is 

(aqat) + v . TU = v - (Avq, (14) 

where h may be chosen to represent both turbulent and molecular diffusion 
processes. The finite-difference expression used to approximate (14) assumes that 
Ti,j,k is located at the center of cell (i, j, k), 

T;Fk =, Ti.5.k + st{(l/sx)[(Tu)i-1,2.j.k - <Tu)i+,/,,j,d 
+ (V~W’~h.i-m - <Th+d 
+ (~/~~)[<Tw)L~.~-IPz - <TW)i.j.t+d 
+ h[(l/~x2)(Ti+,,5,k - 2Ti,j,k + Ti-l.5.d 
+ (l/~Y2W~,j+,,k - 2Ti.5.k $- Ti.j-1.k) 
f (1/~Z2)(Ti.j.k+l - 2C.j.k + Ti,5,k-&ll* (15) 
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A constant diffusion coefficient has been assumed for simplicity, but this can be 
easily changed. The notation ( Tu)~+~,~,~,~ means that the flux between cell (i, j, k) 
and (i + 1, j, k) is to be evaluated by the donor-cell rule [ 131, that is, 

Donor-cell fluxes are used here to insure numerical stability and to avoid negative 
temperatures upstream from a local hot spot. 

The most common boundary condition on the temperature is that of zero flux, 
which corresponds to a nonconducting wall or a plane of symmetry. Heat sources 
can be added in a variety of ways. Either selected portions of the boundaries can be 
given prescribed temperatures, or prescribed energy fluxes, or, energy can be 
deposited directly into selected regions of the fluid. 

The effects of temperature variation are assumed to influence the fluid motions 
through a Boussinesq approximation, which consists of the addition of buoyancy 
terms to the right sides of the tilde equations (3). For example, the following term 
is added to the w-tilde equation, 

/%dTO - Ti,Lk+l12). 

The constant TO is an initial reference temperature and /3 is the coefficient of thermal 
expansion. This term requires a temperature at the boundary between two cells, 
which is equal to the average of the two cell temperatures. 

An additional numerical stability condition is needed when Eq. (15) is used. This 
condition, which is analagous to (13) is 

m < l/Z (& + & + &). 

The temperature equation can also be used to represent the transport of 
particulate matter when temperature effects are not of interest, in which case T is 
interpreted as the particulate concentration. For example, Fig. 7 shows a particulate 
distribution calculated in this way (with /3 equal to zero). The air flow is incident at 
45” to the buildings, as shown in Fig. 6. There is a constant source of particulate 
matter being inserted at the center of the base of the large obstacle on the side 
furthest from view. The particulate concentration is shown in Fig. 7 as a distribu- 
tion of particles. This was made by plotting in each cell a number of particles 
proportional to the cell concentration T, and with positions distributed randomly 
within the cell. 
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FIG. 7. Perspective view of particulate distribution in flow field shown in Fig. 6. 

B. Marker Particles 

The above technique for particulate transport is not very refined and does not 
work well for problems having sharply defined regions of particulate matter. A 
better technique has been devised by R. C. Sklarew [6]. He keeps track of individual 
particles and uses a clever trick to move them so that their distribution represents a 
solution of (14). The trick is to rewrite this equation as 

@T/at) + V . [u - (X/T) VT] T = 0. (17) 

Now it is evident that if particles are moved (convected) with the effective velocity 

u - (h/T) VT, (18) 

they will approximate a solution of (17). Another way to say this is that the total 
flux of T resulting from convection and diffusion is equivalent to a pure convection 
with the velocity (18). The concentration T in a cell is then proportional to the 
number of marker particles in the cell. The diffusion coefficient can vary arbitrarily 
in space and time, and the method is stable provided no particle moves more than 
one cell width in one time step. 

Figure 8 shows an application of the Sklarew method to the flow of a slowly 
dispersing plume passing over the top of a rectangular structure. The flow is the 
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same as that shown in Figs. 2-3. Particles are seen trapped and recirculated in the 
wake region. 

A similar calculation is shown in Fig. 9 for a more complex building and with 
particulates emitted from a vent centrally located on top of the principle structure. 
The flow field for this problem is identical to that of Figs 4-5. 

The numerical prescription used for moving particles is based on a straight- 
forward extension of the technique used in the original Marker-and-Cell method 

FIG. 8. The dispersal of a narrow plume passing over a single building. Recirculation in wake 
region is clearly evident. 

FIG. 9. The dispersal of pollutant from a flush vent on the top of a complex building structure. 
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[5]. Each particle is moved with a velocity obtained from a linear interpolation 
among the eight nearest cell velocities. The same interpolation is used whether the 
particles are to move with the fluid or with the effective velocity (18). 

The only difficult problem in moving particles is to account for the presence of 
various boundary conditions. In the examples shown here, this has been accom- 
plished by suitably adjusting the velocity interpolation factors when particles are 
near a boundary. 

C. Data Display Techniques 

Most of the figures have displayed data in the form of perspective views. These 
views give a much better picture of the three-dimensional flow fields than could 
be obtained from sets of purely two-dimensional plots. In addition to the velocity 
vectors and particle distributions shown, it can be useful to plot perspective views 
of contour lines, streak lines, and, in general, anything having a three-dimensional 
distribution. 

The perspective plots used here [8] have been designed especially for three- 
dimensional finite-difference calculations. They are so efficient that movies of 
transient flow phenomena can be made at little additional expense to a calculation. 
Movies can also be made with the observation point continually changing position, 
to give an even better feel for the three dimensionality of a problem. 

Stereo pictures of velocity vectors and particle distributions have proven them- 
selves to be extremely useful, but unfortunately they are not easily presented in 
journal articles. The usual procedure is to print, side by side, two perspective 
views made from slightly shifted observation points, as in Fig. 10(A). The left view 

lilE!l llr!l 
A 

m LiE!l 
B 

FIG. 10. The two perspective views in (A) appear in stero when viewed “walleyed,” while 
those in (Et) appear in stero when viewed “crosseyed.” 
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is the correct perspective for the left eye and the right view is correct for the right 
eye. To see in stereo it is necessary to hold the figure approximately 18 in. in front 
of the eyes and to let the eyes move apart so that the combined eye images merge 
together at some distance beyond the page. Unfortunately, many persons cannot 
keep their eyes in focus while forcing them to move apart (walleyed). On the other 
hand, a large fraction of these people can keep them focused when they are moved 
together (crossed). Thus, in Fig. 10B the left and right images shown in Fig. 10(A) 
have been reversed. This figure will appear in stereo when the eyes are crossed to 
bring the images together at a point in front of the page. Admittedly it takes some 
practice to get a stereo view in either case, but the results are generally worth the 
effort. 
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